Learn From Human Eyes: Zero-Shot Recurring Pattern Detection on a Multi-Perception Benchmark

Shimian Zhang, Keaton Kraiger, Skanda Bharadwaj, Robert Collins, Yanxi Liu

Department of Computer Science and Engineering The Pennsylvania State University

May 18, 2025

Overview

- 1. Introduction: Patterns, Symmetry, and Perception
- 2. The Challenge: Perceptual Diversity
- 3. Contributions
- 4. Evaluation
- 5. Comparison with MLLMs
- 6. Qualitative Results & Applications
- 7. Conclusion

Motivation: The Spectrum of Repetition

- Visual world is rich with repetition.
- From perfect symmetry to abstract recurrence.
- Humans perceive structure intuitively.

Figure: Recurring Pattern (RP) Spectrum

Defining Recurring Patterns (RPs)

- Base Definition: RP $\mathcal{R} = \{I_1, \dots, I_n\}$: Set of *n* recurring RP Instances [1, 2].
- Generalized Symmetry: RPs encompass symmetry but allow more flexibility.
- Transformation Flexibility: Instances $I_j \approx g \circ I_i$, where g can be rigid or non-rigid (e.g., $g \in \text{Diff}(\mathbb{R}^2)$).
- **Perceptual Similarity:** Core criterion based on feature distance d_{ϕ} after alignment:

$$\min_{g \in \mathsf{AllowedTransforms}} d_\phi(g \circ \mathit{I}_i, \mathit{I}_j) < au$$

(au: similarity threshold, d_{ϕ} : perceptual distance e.g., DINO [3])

Challenge: Subjective & Diverse Human Perception

- Human perception is subjective [4, 5].
- Same image → Different perceived patterns/symmetries.
- How to define/model consensus?

Granularity (Babies: 1 RP vs 2 RPs)

7 humans perceived 1 RP 9 humans perceived 1 RP 28 humans perceived 1 RP

Challenge: Subjective & Diverse Human Perception (Cont.)

- Human perception is subjective [4, 5].
- Same image → Different perceived patterns/symmetries.
- How to define/model consensus?

Semantics (Cats: Color vs Gaze)

15 humans perceived 1 RP

Detail Sensitivity (Patterns)

6 humans perceived 2 RPs

Our Approach Overview

Contribution 1: Multi-Perception RP Dataset

 First large-scale dataset based on diverse human RP perceptions.

Key Stats:

- 4,625 Images
- 272 Participants
- >220k Unique Perceptions
- 12,125 Aggregated RPs
- ∼30 Perceptions/Image

Figure: Perception Examples

Dataset: Collection & Quality Control

Figure: Data Collection Pipeline

Contribution 2: RP Consensus Aggregation Algorithm

Figure: RP Consensus Aggregation Algorithm

Contribution 2: RP Consensus Aggregation Algorithm (Cont.)

Figure: A Real Example of RP Consensus Aggregation Algorithm

Contribution 3: Zero-Shot RP Detection Approach

Figure: RP Detection Pipeline

Figure: A Real Example of RP Detection

Evaluation Protocol: A Two-Level Approach

- Standard metrics (e.g., for object detection [6, 7]) insufficient for RPs (class-agnostic, pattern focus).
- Adopt two-level evaluation [2]:

Figure: Two-Level Evaluation

Alignment using weighted IoU (wIoU) [8].

Quantitative Results

Comparisons:

- Unsupervised Object Detection (CutLER [9])
- Traditional Methods [1, 2]
- Our Zero-Shot Method

Figure: Performance Evaluation

Comparison with Multi-Modal LLMs (MLLMs)

Goal: Evaluate MLLMs on zero-shot RP detection.

Models Tested:

GPT-4o / Gemini 2.5 Pro

Terminology:

An RP, denoted as \hat{R} , is a set of \hat{s} elements, each referred to as an \textit{RP Instance} |-| instance |-| insta

Given an image, a human subject, \$s\$, can identify \$c\$ distinct RPs within this image. We denote the subject's perceived set of RPs as $\mbox{\mbox{$\mathcal{P}_s = {\rm \mbox{$\mathcal{R}_c}}}}$; is an RP perceived by the subject. RP perceptions of all \$L\$ subjects for the image are denoted by the set \$\mathbb{P}\$\$.

Prompt:

Please identify all recurring patterns you see in this image (image is already segmented into many instance proposals with number ids), and describe them in a JSON format, like:

```
"image_description": "A image of two humans standing in front of a building.",

"RP1": {"rp_keywords: "Humans", "num_instances": 2, "instance_ids": [2, 4]},

"RP2": {"rp_keywords: "Windows", "num_instances": 15, "instance_ids": [11, 12, 14, 15, ...]},
...
```

Comparison with Multi-Modal LLMs (MLLMs) (Cont.)

Goal: Evaluate MLLMs on zero-shot RP detection.

Models Tested:

• GPT-4o

Figure: A Bad Case of GPT-4o on Detecting RP

Comparison with Multi-Modal LLMs (MLLMs) (Cont.)

Models Compared:

• Our Approach / Gemini 2.5 Pro

Figure: A Comparison of Our Approach vs. Gemini 2.5 Pro

Downstream Application: Symmetry Analysis

- RPs provide primitives for symmetry detection.
- Detects Reflection, Rotation, Translation.
- Naturally handles near-symmetry.
- Enables 3D translation symmetry perception from single view (via cross-ratio) [2].

Figure: Symmetry Detection

Downstream Application: Vanishing Point Detection

- RPs provide implicit correspondences for Vanishing Point (VP) detection.
- Alternative to explicit line detection [10].
- More robust in scenes with weak geometric cues or occlusion.

Figure: Vanishing Point Detection

Downstream Application: Counting & Scene Understanding

- Class-Agnostic Counting: RP grouping inherently counts similar items without pre-defined classes [11].
- Enhanced Scene Understanding:
 Combine RPs + Symmetry + VPs for richer descriptions.

Figure: 3D Scene Understanding from Single View

Conclusion Future Work

Contributions Summary:

- Formalized RPs as generalized symmetry, studied perceptual diversity.
- Created first multi-perception RP dataset & benchmark.
- Developed Consensus Aggregation for robust GT generation.
- Proposed a Zero-Shot RP Detection method.
- Demonstrated applications in symmetry analysis & scene understanding.

Main Message: Bridging human visual intelligence and computational perception.

Future Work:

- Deeper integration with reasoning models (LLMs/MLLMs) [12].
- Exploring RP hierarchies explicitly.
- Applications in new domains (robotics, medical).

Thank You / Q&A

Thank You!

 ${\bf Contact:~svz5303@psu.edu}$ Acknowledgements: This research is funded by NSF Grants 1909315

References I

- [1] Jingchen Liu and Yanxi Liu. "Grasp recurring patterns from a single view". In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2013, pp. 2003–2010.
- [2] Shimian Zhang et al. "Novel 3D Scene Understanding Applications From Recurrence in a Single Image". In: arXiv preprint arXiv:2210.07991 (2022).
- [3] Maxime Oquab et al. "Dinov2: Learning robust visual features without supervision". In: arXiv preprint arXiv:2304.07193 (2023).
- [4] Evan Heit and Brett K Hayes. "Relations among categorization, induction, recognition, and similarity: Comment on Sloutsky and Fisher (2004).". In: (2005).
- [5] Yanxi Liu et al. "Computational symmetry in computer vision and computer graphics". In: Foundations and Trends® in Computer Graphics and Vision 5.1–2 (2010), pp. 1–195.

References II

- [6] Mark Everingham et al. "The pascal visual object classes (voc) challenge". In: International journal of computer vision 88 (2010), pp. 303–338.
- [7] Tsung-Yi Lin et al. "Microsoft coco: Common objects in context". In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer. 2014, pp. 740–755.
- [8] Yeong-Jun Cho. "Weighted intersection over union (wloU): a new evaluation metric for image segmentation". In: arXiv preprint arXiv:2107.09858 (2021).
- [9] Xudong Wang et al. "Cut and learn for unsupervised object detection and instance segmentation". In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023, pp. 3124–3134.
- [10] Siyuan Huang et al. "Holistic 3d scene parsing and reconstruction from a single rgb image". In: Proceedings of the European conference on computer vision (ECCV). 2018, pp. 187–203.

References III

- [11] Viresh Ranjan et al. "Learning to count everything". In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 3394–3403.
- [12] Haotian Liu et al. "Visual instruction tuning". In: Advances in neural information processing systems 36 (2024).