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Motivation: The Spectrum of Repetition

• Visual world is rich with repetition.
• From perfect symmetry to abstract recurrence.
• Humans perceive structure intuitively.

Figure: Recurring Pattern (RP) Spectrum
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Defining Recurring Patterns (RPs)

• Base Definition: RP R = {I1, · · · , In}: Set of n recurring RP Instances [1, 2].

• Generalized Symmetry: RPs encompass symmetry but allow more flexibility.

• Transformation Flexibility: Instances Ij ≈ g ◦ Ii , where g can be rigid or non-rigid
(e.g., g ∈ Diff(R2)).

• Perceptual Similarity: Core criterion based on feature distance dϕ after alignment:

min
g∈AllowedTransforms

dϕ(g ◦ Ii , Ij) < τ

(τ : similarity threshold, dϕ: perceptual distance e.g., DINO [3])
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Challenge: Subjective & Diverse Human Perception

• Human perception is subjective [4, 5].
• Same image → Different perceived patterns/symmetries.
• How to define/model consensus?
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Challenge: Subjective & Diverse Human Perception (Cont.)

• Human perception is subjective [4, 5].
• Same image → Different perceived patterns/symmetries.
• How to define/model consensus?
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Our Approach Overview

Figure: Our Approach Overview
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Contribution 1: Multi-Perception RP Dataset

• First large-scale dataset based
on diverse human RP
perceptions.

• Key Stats:
• 4,625 Images
• 272 Participants
• >220k Unique Perceptions
• 12,125 Aggregated RPs
• ∼30 Perceptions/Image

Figure: Perception Examples
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Dataset: Collection & Quality Control

Figure: Data Collection Pipeline 9 / 25



Contribution 2: RP Consensus Aggregation Algorithm

Figure: RP Consensus Aggregation Algorithm
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Contribution 2: RP Consensus Aggregation Algorithm (Cont.)

Figure: A Real Example of RP Consensus Aggregation Algorithm
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Contribution 3: Zero-Shot RP Detection Approach

Figure: RP Detection Pipeline

Figure: A Real Example of RP Detection
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Evaluation Protocol: A Two-Level Approach

• Standard metrics (e.g., for object detection [6, 7]) insufficient for RPs
(class-agnostic, pattern focus).

• Adopt two-level evaluation [2]:

Figure: Two-Level Evaluation

• Alignment using weighted IoU (wIoU) [8].
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Quantitative Results

Comparisons:
• Unsupervised Object Detection (CutLER [9])
• Traditional Methods [1, 2]
• Our Zero-Shot Method

Figure: Performance Evaluation

Finding:
• Our method achieves the best performance on the new multi-perception dataset at
both RP and Instance levels.
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Comparison with Multi-Modal LLMs (MLLMs)

Goal: Evaluate MLLMs on zero-shot RP detection.

Models Tested:
• GPT-4o / Gemini 2.5 Pro

Figure: Consistent Prompting Across Models 15 / 25



Comparison with Multi-Modal LLMs (MLLMs) (Cont.)

Goal: Evaluate MLLMs on zero-shot RP detection.

Models Tested:

• GPT-4o

Figure: A Bad Case of GPT-4o on Detecting RP
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Comparison with Multi-Modal LLMs (MLLMs) (Cont.)

Models Compared:

• Our Approach / Gemini 2.5 Pro

Figure: A Comparison of Our Approach vs. Gemini 2.5 Pro
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Downstream Application: Symmetry Analysis

• RPs provide primitives for symmetry detection.
• Detects Reflection, Rotation, Translation.
• Naturally handles near-symmetry.
• Enables 3D translation symmetry perception from single view (via cross-ratio) [2].

Figure: Symmetry Detection
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Downstream Application: Vanishing Point Detection

• RPs provide implicit correspondences for Vanishing Point (VP) detection.

• Alternative to explicit line detection [10].

• More robust in scenes with weak geometric cues or occlusion.

Figure: Vanishing Point Detection
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Downstream Application: Counting & Scene Understanding

• Class-Agnostic Counting: RP
grouping inherently counts similar items
without pre-defined classes [11].

• Enhanced Scene Understanding:
Combine RPs + Symmetry + VPs for
richer descriptions.

Figure: 3D Scene Understanding from Single View
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Conclusion Future Work

Contributions Summary:

• Formalized RPs as generalized symmetry, studied perceptual diversity.

• Created first multi-perception RP dataset & benchmark.

• Developed Consensus Aggregation for robust GT generation.

• Proposed a Zero-Shot RP Detection method.

• Demonstrated applications in symmetry analysis & scene understanding.

Main Message: Bridging human visual intelligence and computational perception.

Future Work:

• Deeper integration with reasoning models (LLMs/MLLMs) [12].

• Exploring RP hierarchies explicitly.

• Applications in new domains (robotics, medical).
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Thank You / Q&A

Thank You!

Contact: svz5303@psu.edu
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