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Motivation: The Spectrum of Repetition

® Visual world is rich with repetition.
® From perfect symmetry to abstract recurrence.
® Humans perceive structure intuitively.
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Figure: Recurring Pattern (RP) Spectrum
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Defining Recurring Patterns (RPs)

Base Definition: RP R = {/,---,I,}: Set of n recurring RP Instances [1, 2].

Generalized Symmetry: RPs encompass symmetry but allow more flexibility.

Transformation Flexibility: Instances /; =~ g o [;, where g can be rigid or non-rigid
(e.g., g € Diff(R?)).
Perceptual Similarity: Core criterion based on feature distance dj after alignment:

min do(goli, ;) <t
g€EAllowedTransforms ¢(g " J)

(7: similarity threshold, dy4: perceptual distance e.g., DINO [3])
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Challenge: Subjective & Diverse Human Perception

® Human perception is subjective [4, 5].
e Same image — Different perceived patterns/symmetries.
® How to define/model consensus?

Granularity
(Babies: 1 RP vs 2 RPs)

17 humans perceived 1 RP 17 humans perceived 2 RPs

Geometry
(Taiji: Rotation vs Reflection)

7 humans perceived 1 RP 9 humans perceived 1 RP 28 humans perceived 1 RP
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Challenge: Subjective & Diverse Human Perception (Cont.)

® Human perception is subjective [4, 5].
® Same image — Different perceived patterns/symmetries.
® How to define/model consensus?

Semantics
(Cats: Color vs Gaze)

Hi i
12 humans perceived 1 RP 15 humans perceived 2 RPs 2 humans perceived 1 RPs

Detail Sensitivity
(Patterns)

6 humans perceived 2 RPs

-
15 humans perceived 1 RP
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Our Approach Overview
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Contribution 1: Multi-Perception RP Dataset

® First large-scale dataset based
on diverse human RP
perceptions.

e Key Stats:

4,625 Images

272 Participants

>220k Unique Perceptions
12,125 Aggregated RPs
~30 Perceptions/Image

Figure: Perception Examples
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Collection & Quality Cont

Image Sources
Public Datasets,
Crowdsourced

Data Collection: Multi-Perception RP Dataset

Amazon Mechanical
Turk (MTurk)

¥

Image Selection
Does the image contain.
1) Recurring Pattern?
2) Symmetry?

Image Quality Check
Verify RP
presence/suitability

Participant Recruitment

Orientation & Training
RP Tutoial, Labeling Guide

v

Participant Qualification
Onboarding Test

Curated Image Set
4,625 Images

Qualified Particif

RP Annotation Task

Yes

Any RP?
' Not labeled yet

Label RP
with each Instance
Next Image
Task End

Annotation Quality Monitoring
Spammer detection,
Consistency checks

272 Participants ‘

Raw Multi-Perception

Annotations —

1. Image Preparation 2. Participant Management 3. Human Perception Experiment 4. Consensus Aggregation

> 220,000 unique RP

Consensus Aggregation
Algorithm
* Details in Alg. Part

Aggregation Validation
Researcher Annotation,
Statistical Checks

Final Multi-Perception RP
Dataset

Figure: Data Collection Pipeline
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Stage 2: RP Instances Distillation

Stage 1: Consensus RP Grouping
Inst. Embedding Extraction
Instance Feature Extraction &

=
Pairwise Similarity Computaton

Contribution 2: RP Consensus Aggregation Algorithm
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. Cluster C' —
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Final Output - Consensus Ground Truth
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Contribution 2: RP Consensus Aggregation Algorithm (Cont.)

12 humans
| perceived
| one RP

Human RP Perceptions

15 humans
% perceived
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Figure: A Real Example of RP Consensus Aggregation Algorithm
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Contribution 3: Zero-Shot RP Detection Approach
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Figure: A Real Example of RP Detection
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Evaluation Protocol: A Two-Level Approach

e Standard metrics (e.g., for object detection [6, 7]) insufficient for RPs
(class-agnostic, pattern focus).

¢ Adopt two-level evaluation [2]:
Two-level Similarity Score Metrics

Compute Match Pairs of GT RP-Level /1 evel
Input: RP: Gme — Instance-level Rp. I“T;“‘T o =) and Detection B w;;::::]"f’ eve
& RP Detections Similarity -level Similarity (Riq, Rf}
.

Figure: Two-Level Evaluation

¢ Alignment using weighted loU (wloU) [8].
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Quantitative Results

Comparisons:
¢ Unsupervised Object Detection (CutLER [9])
® Traditional Methods [1, 2]
® Our Zero-Shot Method

Comparison of RP Detection Performance on 5300 Images with Aggregated RP Ground Truths

EEE CutLER* [1]
B Feature-based RP Detection [2]

0.8 B3 Patch-based RP Detection (Ours)
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Figure: Performance Evaluation 14 /25



Comparison with Multi-Modal LLMs (MLLMs)

Goal: Evaluate MLLMs on zero-shot RP detection.

Models Tested:
® GPT-40 / Gemini 2.5 Pro

Terminology:

An RP, denoted as S\mathcal{R}$, is a set of $n$ elements, each referred to as an \textit{RP Instance} SI_{i=1}2n$, that that
reoccur in some feature space. Formally, this can be expressed as S\mathcal{R} = \{I_1, \cdots, I_n\}$, where each $I_i$
represents an individual occurrence of the pattern.

Given an image, a human subject, $s$, can identify Sc$ distinct RPs within this image. We denote the subject's perceived set of
RPs as $\mathcal{P}_s = \{\mathcal{R}_1, \cdots, \mathcal{R}_c\}$, where each S\mathcal{R}_i$ is an RP perceived by the subject.
RP perceptions of all SLS subjects for the image are denoted by the set $\mathbb{P}$.

Prompt:
Please identify all recurring patterns you see in this image (image is already segmented into many instance proposals with
number ids), and describe them in a JSON format, like:

{

"image_description": "A image of two humans standing in front of a building.",

"RP1": {"rp_keywords: "Humans", "num_instances": 2, "instance_ids": [2, 4]},

"RP2": {"rp_keywords: "Windows", "num_instances": 15, "instance_ids": [11, 12, 14, 15, ...]},
}

Figure: Consistent Prompting Across Models 15/25



Comparison with Multi-Modal LLMs (MLLMs) (Cont.)

Goal: Evaluate MLLMs on zero-shot RP detection.

Models Tested:
e GPT-40

Figure: A Bad Case of GPT-40 on Detecting RP

16 /25



Comparison wi ulti-Modal LLMs (MLLMs) (Co

Models Compared:
® Qur Approach / Gemini 2.5 Pro

RP Detections (number of instances)
Detected RP 0 Small Birds/Chicks (38)

Figure: A Comparison of Our Approach vs. Gemini 2.5 Pro
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Downstream Application: Symmetry Analysis

® RPs provide primitives for symmetry detection.

® Detects Reflection, Rotation, Translation.

e Naturally handles near-symmetry.

® Enables 3D translation symmetry perception from single view (via cross-ratio) [2].

~ ~.

2D Translation ’ 1D Translation
b~ Son S Sy (in 3D)

-

_______________________

Figure: Symmetry Detection

18/25



Downstream Application: Vanishing Point Detection

® RPs provide implicit correspondences for Vanishing Point (VP) detection.
¢ Alternative to explicit line detection [10].

® More robust in scenes with weak geometric cues or occlusion.

Figure: Vanishing Point Detection
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Downstream Application: Counting & Scene Understanding

e Class-Agnostic Counting: RP
grouping inherently counts similar items
without pre-defined classes [11].

e Enhanced Scene Understanding:
Combine RPs + Symmetry + VPs for
richer descriptions.

I'he paintings have a'potential translation symmetry in 3D.

Figure: 3D Scene Understanding from Single View
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Conclusion Future Work

Contributions Summary:

Formalized RPs as generalized symmetry, studied perceptual diversity.

Created first multi-perception RP dataset & benchmark.

Developed Consensus Aggregation for robust GT generation.
Proposed a Zero-Shot RP Detection method.

Demonstrated applications in symmetry analysis & scene understanding.

Main Message: Bridging human visual intelligence and computational perception.

Future Work:
¢ Deeper integration with reasoning models (LLMs/MLLMs) [12].
® Exploring RP hierarchies explicitly.

e Applications in new domains (robotics, medical).
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Thank You / Q&A

Thank You!

Contact: svz5303@psu.edu
Acknowledgements: This research is funded by NSF Grants 1909315
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